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A B S T R A C T   

Background: Stress is one of many ailments associated with urban living, with daily travel a potential major 
source. Active travel, nevertheless, has been associated with lower levels of stress compared to other modes. 
Earlier work has relied on self-reported measures of stress, and on study designs that limit our ability to establish 
causation. 
Objectives: To evaluate effects of daily travel in different modes on an objective proxy measure of stress, the 
galvanic skin response (GSR). 
Methods: We collected data from 122 participants across 3 European cities as part of the Physical Activity through 
Sustainable Transport Approaches (PASTA) study, including: GSR measured every minute alongside confounders 
(physical activity, near-body temperature) during three separate weeks covering 3 seasons; sociodemographic 
and travel information through questionnaires. Causal relationships between travel in different modes (the 
“treatment”) and stress were established by using a propensity score matching (PSM) approach to adjust for 
potential confounding and estimating linear mixed models (LMM) with individuals as random effects to account 
for repeated measurements. In three separate analyses, we compared GSR while cycling to not cycling, then 
walking to not walking then motorized (public or private) travel to any activity other than motorized travel. 
Results: Depending on LMM formulations used, cycling reduces 1-minute GSR by 5.7% [95% CI: 2.0–16.9%] to 
11.1% [95% CI: 5.0–24.4%] compared to any other activity. Repeating the analysis for other modes we find that: 
walking is also beneficial, reducing GSR by 3.9% [95% CI: 1.4–10.7%] to 5.7% [95% CI: 2.6–12.3%] compared 
to any other activity; motorized mode (private or public) in reverse increases GSR by up to 1.1% [95% CI: 
0.5–2.9%]. 
Discussion: Active travel offers a welcome way to reduce stress in urban dwellers’ daily lives. Stress can be added 
to the growing number of evidence-based reasons for promoting active travel in cities.   
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1. Introduction 

Cities are the centre of multiple health and social challenges. Non- 
communicable diseases (NCDs), for example, kill 41 million people 
every year, and are driven by factors associated with urbanization such 
as physical inactivity, poor diet, and air pollution (WHO 2019). Cities, 
however, also provide solutions to many such ailments through the 
creation of wealth, boosting of creativity, and opportunities for sus-
tainable living (Bettencourt and West 2010). Population densities found 
in cities enable intense use of infrastructure, theoretically minimizing 
the need for private motorized transport and enabling alternatives such 
as walking and cycling. Many cities, however, are not planned to deliver 
optimally on such opportunities. Despite an increased recognition of 
multiple benefits of active travel policies (de Nazelle et al. 2011; Mueller 
et al. 2015), few cities have developed ambitious programmes for its 
promotion. Active travel in particular is understood to simultaneously 
offer a viable non-polluting transport option and a convenient, and 
economically affordable means of integrating physical activity into daily 
lives (Götschi et al. 2016). It is space-efficient compared to driving, and 
thus can liberate public space for other beneficial uses such as green-
space. Questions remain, however, on whether cycling can help tackle 
what is quintessentially associated with city life and a recognized 
determinant of poor health (Seiler et al. 2020). 

With fear of traffic ranking as one of its top deterrents (Heinen et al. 
2010; Winters et al. 2017), experiences of stress can be expected from 
urban cycling. One study indeed found that specific conditions within 
cycling journeys cause ‘peak stress’, such as motorized vehicles moving 
too close to cyclist or turning in front of cyclists (Caviedes and Figliozzi 
2018), whereas Teixeira et al. (2020) found that physical segregation 
between cyclists and vehicles reduces the likelihood of stress. Another 
showed that travelling on local roads lowered levels of stress compared 
to collectors and arterials (Fitch et al. 2020). Recent studies have indi-
cated, however, that active travel could in fact be associated with lower 
levels of stress in general (Avila-Palencia et al. 2018, Avila-Palencia 
et al. 2017), and significantly higher happiness ratings (Zhu and Fan 
2018; Fan et al. 2019). Recent research has also shown that cyclists tend 
to experience positive perceptions and affects during their journeys, for 
example as measured by: satisfaction with the work commute (Olsson 
et al. 2013; St-Louis et al. 2014), commute-time relaxation and excite-
ment (Gatersleben and Uzzell 2007), journey-based affect and stress 
(LaJeunesse and Rodríguez 2012), self-perceived stress upon arrival at 
work (Gottholmseder et al. 2009), and higher positive or uplift of mood 
(Glasgow et al. 2019, Lancée et al. 2017). 

With exception of the Caviedes and Figliozzi (2018) and Fitch et al. 
(2020) analyses, these previous studies, however, relied on self- 
reported stress or related measures, rather than an objective measure 
of stress. Moreover, most studies used cross-sectional designs, and 
none made any attempt to randomize the treatment (i.e., cycling). 
Thus, and despite ample adjustments for multiple confounders in most 
cases, establishing the direction of influence (causation) has not been 
possible so far. 

The galvanic skin response (GSR), a measure of continuous varia-
tions in the electrical conductance of skin, has been used in previous 
studies as an objective measure of stress (Helander 1978; Labbé et al. 
2007; Hernandez et al. 2011). The skin conductance is understood to 
vary with the state of sweat glands in the skin, itself regulated by the 
Autonomic Nervous System (ANS) – arousal of the sympathetic branch 
of ANS influences sweat glands to produce more sweat which in turn 
increases skin conductivity (Navea et al. 2019). Therefore, the mea-
surements of GSR have also been used to indicate psychological or 
physiological arousal (Zhai and Barreto 2006; Kelly and Jones 2010). 
GSR measurements can be made continuously, in a way that is non- 
intrusive and non-burdensome, using wearable sensors, such as the 
BodyMedia Sensewear (Laeremans et al. 2017). GSR sensors are thus 
ideal for the study of stress responses to individuals’ daily routines in 
their own real-world setting, such as during travel. 

Although randomized controlled trial (RCT) approaches may be 
ideal to establish causation, an out-of-routine experiment would be both 
costly and remove the realities of exposures and responses during daily 
lives. As an appropriately designed natural experiment to address po-
tential sources of bias would be nearly impossible in this context, a best 
alternative is to use a statistical framework that expressly balance the 
data before assessing treatment effects (Guo and Fraser 2014). Pro-
pensity score matching (PSM) is such an approach, used to reduce bias 
by assembling a sample in which confounding factors are balanced be-
tween treatment groups (Morgan 2018) and meant to approximate RCTs 
and to help infer causation (Schneider and McDonald 2010). 

We aimed to investigate the impacts of travel mode choices on 
objectively-measured stress through the use of GSR measurements, 
using propensity score matching (PSM), which matches observations 
for subjects who share similar distributions of observed baseline 
covariates. We compare different groups of mode users one single 
transport mode at a time (considered as the treatment group), matching 
observations of participants travelling on that transport mode with a 
corresponding control group consisting of observations of participants 
not in the same transport mode (i.e., the control group can include 
observations in non-transport activities or in other transport modes). As 
a result, all measured covariates are balanced across treatment and 
control groups so that we are able to estimate treatment effects in a way 
that mimics those reported in a RCT with the benefit of reduced con-
founding, because conditional on the propensity score, the differences 
in the outcomes between the treatment and control groups can be 
essentially attributed to the treatment effects (Li et al. 2019). Regres-
sion analysis then enables us to estimate the causal effects of using a 
single transport mode on stress measured by GSR. We mainly focus on 
whether individuals will feel less stressed while they are cycling 
compared to while they are not cycling, and repeat the analysis for 
motorized travel and walking. 

2. Materials and methods 

2.1. Overview 

Propensity scores matching (PSM) can be used as a quasi- 
experimental method (Jones and Lewis 2015) to identify the impact 
of a particular intervention, or event (a “treatment”) in a study that is 
not feasible to randomize. We establish total times (minute by minute 
observations) while cycling as our treatment group, and use PSM to 
artificially construct a control group randomly based on observed 
characteristics. The matching process involves the development of a 
logit model to explain treatment assignment, which is then used to 
identify controls with similar matching characteristics. Note that the 
control group contains observations taken during any activity other 
than cycling, so it may include (but is not restricted to) other travel 
activities and may include observations from individuals who cycle at 
other times of the day. We verify adequate matching comparing the 
distribution of confounders across the two groups. We then compare 
our outcome measure, GSR, across the two groups using a linear mixed 
model, and compute the average treatment effect as an overall assess-
ment of impacts of cycling on stress. We repeat the analysis for walking, 
and then for the combination of private and public motorized travel. 

2.2. Study population and design 

We use data from a panel study on health and transport in three large 
European cities (Antwerp, Barcelona, London) as part of the Physical 
Activity through Sustainable Transport Approaches (PASTA) project 
(Gerike et al. 2016; Dons et al. 2015). In this component of the EU 
project, 122 adults (41 in Antwerp and Barcelona, 40 in London) were 
recruited from the pool of respondents of a larger longitudinal survey 
who answered positively to taking part in a sensor-based sub-study. Only 
non-smoking adults between ages of 18 and 65 and with a BMI lower 
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than 30 were selected for the sub-study, and we aimed for a balanced 
sample of males and females with a range of physical activity patterns. 
For one full week, participants were asked to wear a GPS monitor and a 
‘SenseWear’ device (among other sensors not related to this current 
paper) and to fill in a comprehensive baseline questionnaire, including a 
one-day travel activity diary. This measurement week was repeated 
three times, in Winter, Summer and Spring/Fall. In addition to GSR 
measurements, the SenseWear records data such as skin temperature 
and physical activity level (as one-minute average METs). The ques-
tionnaire data provide participants’ socio-demographic characteristics 
and travel habits. Travel time and mode identification were derived 
from the combination of physical activity, GPS and diary data. More 
details can be found in Avila-Palencia et al. 2019; Laeremans et al. 
2018a; Laeremans et al. 2018b. 

2.3. Outcome 

GSR, measured minute by minute on our participants throughout 
their three weeks of participation in the study, is our response variable. 
GSR, which refers to changes in sweat gland activity that are associated 
with the intensity of emotional arousal (Kyriakou et al. 2019), is 
regarded as a proxy of overall stress level once confounders such as 
physical activity and temperature are accounted for (Sarker et al. 2016). 

2.4. Treatment variable 

We first establish the “treatment” variable used in the propensity 
score matching (PSM) approach. Methods will be explained with cycling 
as the treatment variable, but we will also show results on subsequent 
analyses with motorized travel (public and private) and walking as 
respective treatment groups. We used a bespoke mode detection algo-
rithm to classify mode choice, as built-in activity detection based solely 
on accelerometery in the SenseWear device did not show high accuracy 
when compared to the travel activity diaries. The algorithm (summa-
rized in Appendix Section 1) combined activity diary, GPS, and activity 
detection data from the SenseWear to identify 4 distinct travel modes (1 
= walking; 2 = cycling, 3 = motoring (i.e., car, taxi, motorcycle, public 
transport), 4 = others) and a stationary state (5 = stationary). As we 
want to compare the overall stress of participants while cycling to that 
while not cycling, the treatment variable in our potential outcomes 
framework is a dichotomous variable: observation from individual 
participants who are cycling (=1) or observation from individual par-
ticipants who are not cycling (=0). 

2.5. Other explanatory measures 

Several variables that may influence GSR were recorded in the 
SenseWear: i.e., near-body temperature (average near body ambient 
temperature per minute), METs (Metabolic Equivalents of Task, the ratio 
of metabolic rate (the rate of energy consumption) during a specific 
physical activity to a reference metabolic rate), and heatflux (a measure 
of the amount of energy being dissipated by the body to its surroundings 
as convective heat per unit area). The near-body temperature sensor is 
attached to the heat flux sensor and is the temperature on the outer side 
of the SenseWear. Metabolic Equivalents of Task (METs) are calculated 
through a proprietary algorithm using the data from the accelerometer 
on the SenseWear. Heatflux is derived through a thermally conductive 
sensor in the SenseWear between the skin at the point of contact with the 
SenseWear and the immediate surroundings of the device. 

The SenseWear also recorded the date and time of the observations of 
each participant, which we categorized into three groups: morning peak 
(6am–9am), afternoon peak (4pm–7pm) and non-peak hours. All par-
ticipants were asked to fill in the PASTA baseline questionnaire so that 
the date of birth, sex, educational level, income status, smoke or not, 
weight and height of each individual were recorded. For each partici-
pant age was computed from the date of birth and body mass index 

(BMI) from self-reported weight and height. The rest of the variables 
retrieved from the questionnaire were regarded as categorical variables. 
For example, sex is a variable with two categories (male and female), as 
is education (secondary education and higher/university education), 
whereas income is represented by seven categories (from ‘<€10,000’ to 
‘≥€150,000’). These variables are subject-level baseline covariates and 
they likely affect both treatment assignment (choice of a single transport 
mode) and the outcome (GSR). Therefore, it is appropriate to include 
them in PSM (Austin 2011). Furthermore, to estimate treatment effects 
with greater precision when doing PSM, we also need to take into ac-
count variables that do not affect treatment assignment but that affect 
the outcome (Austin 2007; Brookhart et al. 2006). In our case, together 
with the aforementioned baseline covariates, variables that may influ-
ence GSR and are collected by the SenseWear – near-body temperature 
and METs are also considered in the PSM stage (heatflux is excluded 
from this stage because it is correlated with near-body temperature as 
shown in Appendix Fig. S3-1). 

2.6. Propensity score matching and linear mixed models 

Details of PSM procedures are shown in Appendix Section 2. In short, 
the PSM method entails identifying a sample of control observations to 
match observations in the treatment group (here while cycling/walking/ 
motoring as treatment vs while not cycling/not walking/not motoring as 
control), based on a set of independent covariates that explain both 
treatment (cycling/walking/motoring) and outcome (GSR). A logistic 
model is developed using the MatchIt R-package (Ho et al. 2007; Ho et al. 
2011) (see Appendix Section 1.2), in order to calculate the propensity 
scores used to match treatment and control samples, after excluding 
highly correlated covariates to avoid multicollinearity (see Appendix 
Section 2.1). Once a matched sample is constructed, standardized mean 
difference (SMD) and other diagnostics are used to verify whether 
covariates are balanced between treatment and control groups, that is, 
whether the distribution of those covariates are the same between treated 
and untreated groups. Based on the matched sample, linear mixed models 
(LMMs) are then derived to predict the outcome in order to evaluate the 
average treatment effect on the treated population (ATT). The ATT is 
established by averaging the effect of a (single) transport mode on stress 
over those participants who are using this transport mode. The LMMs 
used in our study are outcome regression (OR), inverse probability 
weighting model (IPWM), and augmented regression (AR) – all with GSR 
as the response variable. The OR do not make use of propensity scores, 
while IPWM utilizes the inverse of the propensity scores as weights so 
that weighted least squares (WLS) can be employed to estimate the 
outcomes. These weights are also known as inverse probability weights 
(IP weights). AR also uses the IP weights but considers them as a co-
variate in the model. To account for the repeated measures design of our 
data collection, we use individuals as random effects. We use the user ID, 
a factor containing a unique ID number for each individual, as the 
random effect variable grouping all personal factors otherwise included 
in baseline characteristics (e.g., age, gender, city). The models include 
activity-specific characteristics (treatment variable, near-body tempera-
ture, METs, travel period) to reduce possible residual imbalance or 
remaining confounding (Nielsen 2016; Stuart 2010). Individual charac-
teristics obtained that are shared by all participants from the baseline 
questionnaire (gender, age etc.) are also included in the models as fixed 
covariates. The activity-specific characteristics are included in both fixed 
and random effects parts of LMMs since they have subject-specific effects 
that are unique to a particular participant. Specifying individuals as 
random effects with random slopes for each participant impacted by 
activity characteristics in the LMMs (as each person is assumed to have 
different baseline of activity characteristics) allows us to incorporate 
person-specific variability in the GSR because each participant has their 
own unique “curve” that describes longitudinal change in the response 
(Fitzmaurice and Ravichandran 2008). 
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3. Results 

3.1. Description of the study sample 

As detailed in previous analysis, our sample of 122 participants was 
almost equally distributed over the three cities, was relatively young 
(35 year old average), slightly more female (55%) than male, in large 
majority having achieved higher education levels (89%), and mostly 
fully employed (72%) (see Avila-Palencia et al. 2019), and more than 
half of participants (69.7%) have an annual household income of more 
than €25,000 given the information we have (participants who did not 
share information of their income were recorded as unknown). 

3.2. Cycling analysis 

3,258,656 minute-based observations were available from the pool 
of participants, averaging 18.5 days per participant. From these, the 
matching process for the cycling analysis yielded a final sample of 
102,288 minute-by-minute observations, equally divided among the 
treatment and control groups, with 51,144 observations each. The dis-
tribution of propensity scores between treatment and control groups 
before and after PSM demonstrates a successful matching process, the 
details of which are shown in Appendix Section 3.2. As expected, our 
final sample was well balanced with regards to selected covariates across 
control and treatment groups, including near-body temperature, 
average METs and sex (Appendix Table S3-2). In addition, we measured 
an average (SD: standard deviation) GSR in our treatment group of 0.18 

(0.27), versus 0.22 (0.37) in the control group. The control group con-
sisted of 2113 observations while walking, 4051 while motoring, 44,361 
while being ‘stationary’, and the rest of observations (620) belong to 
unknown travel mode (i.e., while travelling but mode could not be 
recognized). 

Our final sample of observations after matching has similar charac-
teristics as our initial pool of participants in terms of age, BMI, educa-
tion, and gender. Where they differ most markedly is in the distribution 
across the three cities, with now 46% of the sample observations in 
Antwerp, and the rest evenly distributed between Barcelona and London 
(see detailed distributions in Appendix Section 8). 

The distribution of the outcome variable is heavily skewed to the left 
(as shown in Fig. 1), therefore we use the log transformation of GSR as 
our response variable in the three LMMs developed to evaluate the ATT. 
Taking the log of GSR make residuals closer to a normal distribution and 
reduce the heteroscedasticity, improving the fit of the model. In all three 
fitted models all covariates – except non-peak hours cycling period, 
cycling in Barcelona and some individual-level characteristics such as 
health, smoke or not, income status and educational level – are shown to 
be significant at the p < 0.05 level in explaining the log of GSR (Table 1). 
Across all three models, cycling is shown to decrease log(GSR) compared 
to not cycling (at that moment), accounting for physical activity levels, 
time of day and near-body temperature. As expected METs and near- 
body temperature are also strongly positively associated with log 
(GSR). Compared to the morning peak, cycling during the afternoon 
peaks showed higher log(GSR), and no statistically significant difference 
with off-peak travel. It appears that cycling in Barcelona and London led 

Fig. 1. Distributions of GSR for three single transport modes (walking cycling, and motoring) before and after log transformation.  
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to lower log(GSR) compared with cycling in Antwerp, but the difference 
in log(GSR) between cycling in Barcelona and Antwerp was not statis-
tical significant. From the table, it also showed that females while 
cycling generally have lower log(GSR) than males while cycling. 

Estimating ATT for participants with matched observations by their 
nearest propensity scores (using Eq. (S.4) in Appendix Section 2.1) in-
dicates that participants would feel less stressed while cycling compared 
to not cycling as the GSR is 10.90% lower while cycling compared to not, 
when using the OR model. This effect is attenuated to − 5.72% when 
applying the IPWM model, and − 11.07% when using the AR model 
(Fig. 2 and Table S6). 

3.3. Walking and motorized travel analysis 

The walking and motorized travel analyses showed similarly suc-
cessful matching diagnostics as the cycling analysis (Appendix Table S4- 
1 and S5-1). Walking was shown to result in a statistically significant 
reductions in stress level, with p < 0.05 in the OR and AR models, and p 
< 0.1 in the IPWM model (Appendix S4-2). Taking motorized (public or 
private) transport led to a significant increase in stress when applying 
the OR (p < 0.05) and AR (p < 0.1) models, but the motorized travel 
treatment variable did not reach a statistical significance in the IPWM 
model (Appendix Table S5-2). Other covariates across the models had 
generally similar effects as for the cycling analysis, except for the IP 

Table 1 
Estimated coefficients from the three mixed effects regression models explaining the log of GSR for cycling vs other non-cycling activities.   

Estimated Coefficients from OR (95% CI) Estimate Coefficients from IPWM (95% CI) Estimate Coefficients from AR (95% CI) 

(Intercept) − 4.943 (− 6.014, − 3.871)*** − 4.860 (− 5.967, − 2.873)*** − 4.942 (− 6.014, − 3.871)*** 

Treatment (cycling) − 0.057 (− 0.106, − 0.009)*** − 0.015 (− 0.042, 0.039)** − 0.056 (− 0.105, − 0.007)*** 

Near-body temperature 0.067 (0.057, 0.077)*** 0.063 (0.052, 0.073)*** 0.067 (0.057, 0.077)*** 

METs 0.103 (0.091, 0.115)*** 0.074 (0.063, 0.085)*** 0.103 (0.091, 0.115)*** 

Travel period    
afternoon peak 0.061 (0.029, 0.093)*** 0.080 (0.031, 0.129)*** 0.061 (0.029, 0.093)*** 

Non-peak hours − 0.007 (− 0.026, 0.012) − 0.012 (− 0.044, 0.020) − 0.007 (− 0.026, 0.012) 
City    
Barcelona − 0.120 (− 0.300, 0.061) − 0.150 (− 0.337, 0.036) − 0.119 (− 0.299, 0.061) 
London − 0.357 (− 0.547, − 0.168)*** − 0.392 (− 0.588, − 0.153)*** − 0.357 (− 0.546, − 0.168)*** 

Gender    
female − 0.250 (− 0.402, − 0.097)*** − 0.195 (− 0.352, − 0.089)** − 0.250 (− 0.402, − 0.097)*** 

Health    
very good − 0.069 (− 0.322, 0.184) − 0.042 (− 0.304, − 0.220) − 0.068 (− 0.322, 0.184) 
good − 0.070 (− 0.323, 0.184) − 0.089 (− 0.351, 0.174) − 0.070 (− 0.323, 0.184) 
fair 0.200 (− 0.209, 0.608) 0.133 (− 0.289, 0.556) 0.200 (− 0.209, 0.608) 
poor 0.562 (− 0.597, 1.720) 0.510 (− 0.688, 1.707) 0.562 (− 0.597, 1.720) 
Smoke    
used to smoke − 0.052 (− 0.254, 0.150) − 0.047 (− 0.256, 0.161) − 0.052 (− 0.254, 0.150) 
Education    
secondary − 0.018 (− 0.60, 0.223) − 0.054 (− 0.303, 0.195) − 0.018 (− 0.60, 0.223) 
Income    
€10,000-€24,999 0.442 (− 0.361, 1.244) 0.267 (− 0.563, 1.096) 0.441 (− 0.361, 1.244) 
€25,000–€49,999 0.419 (− 0.373, 1.210) 0.269 (− 0.550, 1.087) 0.419 (− 0.373, 1.210) 
€50,000–€74,999 0.465 (− 0.330, 1.260) 0.302 (− 0.520, 1.1229) 0.465 (− 0.330, 1.260) 
€75,000–€99,999 0.776 (− 0.033, 1.585) 0.573 (− 0.264, 1.409) 0.776 (− 0.033, 1.585) 
€100,000–€149,999 1.037 (0.171, 1.903) 0.814 (− 0.082, 1.710) 1.037 (0.171, 1.903) 
≥€150,000 0.866 (− 0.261, 1.993) 0.738 (− 0.427, 1.903) 0.866 (− 0.261, 1.993) 
unknown 0.576 (− 0.222, 1.374) 0.404 (− 0.421, 1.229) 0.576 (− 0.222, 1.374) 
Age 0.008 (− 0.001, 0.016) 0.007 (− 0.001, 0.016) 0.008 (− 0.001, 0.016) 
BMI 0.005 (0.025, 0.034) 0.016 (− 0.015, 0.046) 0.005 (0.025, 0.034) 
IP weights   − 0.00003 (− 0.0001, 0.0001)* 

OR: Outcome regression; IPWM: Inverse probability weighting model; AR: Augmented regression. 
* significant at p < 0.1 ** significant p < 0.05 *** significant at p < 0.001. 

Fig. 2. Treatment effects (with their 95% CIs) of three (single) transport modes vs any other activity using propensity scores matching and three regression models 
(outcome regression, inverse probability weighted regression, and augmented regression). 
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weights losing their significance in the walking analysis (AR model) 
(Appendix Table S4-1 and S4-2). 

When estimating the ATT, we find overall that walking lowers stress 
as GSR is reduced by − 3.94 to − 5.68%, depending on the model applied 
(Fig. 2 and Appendix Table S6). Conversely, motoring (i.e., car, motor-
cycle, taxi, public transport) slightly increases stress levels, with effects 
ranging from 0.94% to 1.13%. None of 95% the confidence intervals 
include the 0 value, indicating overall statistically significant impacts 
(Fig. 2 and Appendix Table S6). 

4. Discussion 

4.1. Summary of results 

We evaluated relationships between stress and travel mode, using 
GSR as an objective measure of stress monitored on a minute-by-minute 
basis for three separate weeks on a free-living population of 122 adults 
living in three large European cities. We used PSM to account for con-
founding effects by measured socio-demographic and activity level con-
founders. We use three regression model formulations to establish robust 
results, and consistently find across these models that cycling signifi-
cantly lowers stress levels compared to engaging in other activities, ac-
counting for physical activity and other confounders. For example, in the 
outcome regression model, cycling was shown to decrease stress levels as 
GSR is reduced by up to 10.51% [95% CI: 4.88–22.70%] compared to 
GSR while not cycling. Similarly, walking was shown to reduce stress as 
GSR is lowered by up to 6.24% [95% CI: 2.90–13.34%]. Traveling in 
motorized transport was shown, on the other hand, to be more stressful 
since GSR is increased by as much as 1.43% [95% CI: 0.62–3.16%]. 

4.2. Comparison with previous studies 

Our results are largely in line with previous findings on stress-related 
benefits of cycling, or more generally active modes of travel, as compared 
to motorized modes. Many studies report general self-reported stress and 
wellbeing associated with mode choice rather than stress experienced 
during travel itself. Avila-Palencia et al. (2018) for example found sig-
nificant decreases in self-reported stress and improvement in self- 
reported mental health for each additional day of cycling per month, 
but no such associations with other modes. Similar findings were found 
for both cycling and for associations with self-reported physical health 
and vitality (but none for the other modes). In a study of commuters but 
excluding cyclists, pedestrians were the least stressed, followed by transit 
users then car users (Legrain et al. 2015). Lower levels of stress in pe-
destrians compared to cars were in part explained by greater enjoyment 
of the travel experience, and mediated by their satisfaction with comfort 
and safety (Legrain et al. 2015). In a London-based commuter study, life 
satisfaction but not mental distress was significantly associated with 
walking or cycling vs driving, with varying results for public transport 
depending on type and connectivity (Chng et al. 2016). 

Our approach is most akin to studies that have focused on the 
experiential element of travel modes, as we assessed stress experienced 
while cycling (or while walking /motoring). A growing body of research 
has found higher levels of satisfaction with their commute among cy-
clists and pedestrians than other modes (St-Louis et al. 2014; Gate-
rsleben and Uzzell 2007; LaJeunesse and Rodríguez 2012; Olsson et al. 
2013; Paige Willis et al. 2013; Smith 2017; Handy and Thigpen 2019; 
Singleton 2019). Mokhtarian et al. (2015) found that, in comparison 
with walking, bicycle and motorcycle trips were more often seen as 
pleasant, and motorized modes less often seen as pleasant. Gatersleben 
and Uzzell (2007) explained how emotions such as a sense of relaxation 
or excitement experienced during active travel may lead to more satis-
factory commutes compared to other modes. Wild and Woodward 
(2019) found that the reasons why cyclists are the happiest commuters 
were due to the predictability of travel time, the pleasures of physical 
activity, and opportunities for casual social interactions and nature 

contact. Compared to cars, LaJeunesse and Rodríguez (2012) reported 
significantly lower journey-based self-assessed stress in pedestrians, 
cyclists, and bus users, and conversely higher attunement (sense of 
peace and relaxation) in active modes and for bus users. In an in-depth 
analysis of effects associated with commuter well-being, Singleton 
(2019) found that pedestrians and cyclists in Portland, Oregon clearly 
benefited from higher levels of physical and mental health, confidence, 
positive affect, and overall hedonic well-being than other modes. The 
study, however, also showed that cyclists suffered more from fear than 
other modes of travel, indicating how investigating deeply into psy-
chological constructs may highlight also some detrimental aspects of 
active travel. In a Montreal-based study, built and natural environment 
features could not explain the higher levels of commute satisfaction 
among cyclists except for surprising positive impacts of slopes, but 
season mattered (Paige Willis et al. 2013). Moreover, some studies have 
found that contrary to other mode users, cyclists’ satisfaction with their 
commute was unaffected by distance or congestion (Paige Willis et al. 
2013; Smith 2017). Olsson et al. (2013) found that the significant pos-
itive effects on satisfaction with the work commute of pedestrians and 
cyclists in turn led to higher levels of happiness based on self-reported 
ratings of frequency and intensity for positive and negative emotions. 

Our approach, however, is not directly comparable to previous work 
as, unlike any other study – with the exception of Caviedes and Figliozzi 
(2018) and Fitch et al. (2020) who assessed peak stress during cycling 
journeys with bio-sensors – we used stress measured during the travel 
journey itself, rather than self-reported journey related stress collected 
in recall instruments outside travel periods. This removes recall bias 
issues in addition to providing an objective measure of stress. The closest 
design in terms of temporal proximity of data collection is a study of self- 
reported stress collected upon arrival at work (Gottholmseder et al. 
2009). The assessment concerned, however, general levels of stress 
rather than travel journey-related stress; travel modes failed to reach 
significance in the regression analysis, although travel time and pre-
dictability – which can be related to travel modes – were found to be the 
main drivers of stress (Gottholmseder et al. 2009). 

While the use of an objective measure greatly adds value to our 
research, it is well known, however, that GSR is an imperfect measure of 
stress. The activation of sweat glands can be a result of nerves responding 
to a variety of stimuli such as physical activity, heat, emotions and so on, 
which despite our best efforts of including confounders such as METs and 
near-body temperature, may still have had residual impacts on our effects 
estimates. Also, sweat glands are activated when individuals are aroused, 
and this arousal can also emanate from positive emotions of excitement 
and awe for instance. For example, as Gatersleben and Uzzell (2007) 
conclude from their survey-based analysis of mode choice: “Driving is 
relatively unpleasant and arousing, public transport is unpleasant and not 
arousing, cycling is pleasant and arousing, and walking is pleasant and 
not arousing.” Clearly the term “arousal” in their paper does not have the 
physiologic meaning we use to interpret GSR here, but this does highlight 
the complexity of interpreting such data. 

A related drawback of our approach is that our objective measure-
ments also relied on identifying exact modes and times of travel to match 
GSR measurements. As with all such studies, the algorithm used to 
detect transport modes was not perfect despite efforts to make the most 
efficient use of the three forms of data sources (GPS, travel diary, 
SenseWear) to triangulate and improve prediction. Errors in travel and 
mode detection may have led to exposure misclassification, imprecision 
and bias when evaluating the causal effects. 

Another difference with previous studies is that, while others 
compared measures of stress or satisfaction between modes, we compare 
stress measurements while cycling to times not cycling, with equivalent 
analyses for walking/motoring. The non-cycling (/non walking/non 
motoring) times will include times in any other activity. As these non- 
cycling times are matched for METs among other factors, they include 
travel in other modes, or participation in indoor physical activity, for 
example (the matched control group contains 13% of observations taken 
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while in other travel modes). The approach enables more like-for-like 
comparison of activity levels. It may seem less useful for direct compar-
ison across travel modes, but the repeated analysis with walking and 
motoring enables a relative assessment of these modes. 

An important drawback of our study is that our mode detection al-
gorithm was not able to distinguish between different motorized modes 
of travel. Judging from the PASTA baseline survey questionnaire, we can 
expect slightly more public transport users than car users (76 participants 
use public transport three days a week or more, versus 49 for cars). The 
literature has been relatively consistent with regards to car use analysis, 
with a general understanding that car increases stress due to congestion, 
travel time and the behaviour of other road users, although some positive 
psychological factors have also been demonstrated, such as perceptions 
of autonomy, protection, power and status (Gatersleben and Uzzell 
2007). The literature has been less consistent in findings of stress asso-
ciated with public versus private motorized transport use, however, in 
part because the specific mode of public transport (e.g., bus, under-
ground, train) seem to bring different benefits or harms (Chng et al. 2016; 
Legrain et al. 2015; Singleton 2019). With potentially opposite effects of 
public vs private motorized transport modes, our findings that motorized 
transport results in 2 to 4% increase in stress are thus to be interpreted 
with caution. As Gatersleben and Uzzell (2007) put it “the use of private 
cars may be too arousing (stressful), whereas the use of public transport 
may be not arousing enough (boring)”. The PASTA study our data orig-
inated from was focused on active travel, hence less effort was put into 
detailing public and private motorized modes. We may safely infer that 
our findings support Gatersleben and Uzzell (2007)’s conclusion that 
“Walking and cycling, however, score positively on arousal as well as 
pleasure (i.e., exciting and pleasurable) and therefore seem an optimum 
form of travel from an affective perspective.” 

Our study brings significant improvements to previous work as it 
attempts to establish causation through the propensity score matching 
methodology. The approach is meant to approximate a randomized 
controlled trial, which would be difficult to establish in the real world. A 
previous study was able to assess impacts of change towards active 
travel on wellbeing with a longitudinal design. Martin et al. (2014) used 
a large longitudinal panel survey in which sufficient numbers of travel 
mode changes towards active travel were identified to estimate its ef-
fects on wellbeing. Although causal effects are still difficult to establish 
with such a design as reasons for travel mode shifts are not known, their 
study still provides a powerful finding that switching from the car to 
active travel (walking or cycling) results in significant improvements in 
self-reported wellbeing. A much smaller panel study based in Cambridge 
failed to detect any significant impact of increasing or decreasing cycling 
to work (but not modal shifts) on physical or mental wellbeing or 
sickness absence (Mytton et al. 2016). 

4.3. Study limitations and future research 

The choice of confounders in the matching process plays an impor-
tant role to produce effect of travel modes on GSR that are unbiased, 
however any measurement error in the confounders could introduce 
various biases, discussed here. For example, measurement error related 
to physical activity estimates in different travel modes could potentially 
introduce a bias in our results, given that we match on METs. The 
literature is relatively inconsistent on Sensewear accuracy across various 
activities, in particular cycling and walking (e.g., Bhammar et al. 2016; 
van Hoye et al. 2014; Powell et al. 2016), so we could not ascertain any 
systematic bias introduced in METs. If anything, the device would 
under-estimate rather than over-estimate METs while cycling, which 
would lead to a conservative estimate (i.e., under-estimate) of benefits 
of cycling on GSR. 

We also matched on demographic and socioeconomic characteristics 
shared by participants as the choice of travel modes is often correlated 
with them and may have impacts on relationships between travel modes 
and the outcome. However, PSM can only account for those measured 

covariates that are included in the matching process, and any bias due to 
potentially unmeasured confounding may remain after matching (Gar-
rido et al. 2014). 

Although we have included as many factors as possible as measured 
confounders in this study, other environmental and personal factors 
certainly play a role in the relationships between stress and different 
travel modes. For example, trip purpose may be relevant, as seen for 
example in Morris and Guerra (2015) analysis of the American time Use 
survey showing that work-related travel had statistically significant 
detrimental impacts on affect (and while cycling had the most positive 
impacts on affect the relationship with travel modes were not statisti-
cally significant). Also, the quality and availability of mode-specific 
transport infrastructure, proximity to traffic, or availability of green-
space have been shown to matter in previous research (e.g., Caviedes 
and Figliozzi 2018; Fitch et al. 2020; Fan et al. 2011). For transit, in- 
vehicle delays have been shown to be a major source of dissatisfaction 
Carrel et al. (2016). Weather conditions could also affect stress (Paige 
Willis et al. 2013). Finally, as has been argued by De Vos (2019), atti-
tudes may be essential elements to account for as it may be the consis-
tency between the chosen travel mode and attitudes towards that mode 
that drive satisfaction with travel. Including more possible environ-
mental, personal, or circumstantial confounders in future studies would 
help us further reduce the bias and thus assess the relationships of travel 
modes on stress more accurately. 

To tackle some (but not all) of these limitations, GPS tracking data 
opens up further research opportunities to account for more con-
founders, and also to investigate the types of built environment features 
that can minimize stress while traveling. As a means of disentangling 
different sources of stress and other factors, including attitudes, that 
may affect bio-sensed responses such as GSR, a mixed-method approach 
with interviews following monitored journeys could also be developed. 

We may also have introduced errors in both our treatment assignment 
and out outcome measurement. While we strived to improve mode 
detection by combining GPS and physical activity data (see Appendix 
Section 1), compared to self-reported activity diaries (in itself not a gold 
standard), our detection algorithm adequately identified only 38% of 
minutes in a trip in any mode and 23% of minutes cycling (Orjuela 2018). 
In absence of a gold standard, and as the algorithm generated equally low 
sensitivity (i.e., percentage of recognised trip minutes over all trip mi-
nutes reported in the diary) and positive predictive values (i.e., per-
centage of true trips identified over all data identified as a trip), however, 
it is difficult to assess whether there is any systematic bias introduced and 
its directionality. In addition, more detailed mode-specific analyses 
would also need to be carried out in the future. As we had a “unknown” 
travel mode category for which mode could not be detected, we con-
ducted a sensitivity analysis excluding these 620 observations to ensure 
no bias would be introduced from any potential (but unlikely) systematic 
error in assigning travel modes. Results shown in Appendix Figure S7 and 
Table S6 are virtually the same. We could not resolve, however, the issue 
of distinguishing between private and public motorized travel modes. As 
these are known to have different impacts on stress, further GSR studies 
should investigate these as separate modes. Lastly, direct comparison 
between travel modes, rather than our approach of separate repeated 
analyses of treatment move vs other matched activities, are also needed. 
For example, although we observed that cycling has a stronger negative 
impact on GSR than walking from Fig. 2, the reason is unclear and future 
research may further explore relative impacts of travel modes. 

As for GSR as a measure of stress, it is clear that sweat glands might 
be activated by positive arousal, which could lead to a higher GSR not 
necessarily associated to higher levels of stress. This type of arousal 
may be present in either the intervention or the control group, however, 
so we are unsure of its effects on our outcome. We do note, however, 
that in general GSR seems to be a good indicator of stress. In a recent 
literature review and comparison between laboratory and real-world 
conditions to measure stress (Kyriakou et al. 2019), the two studies 
that used only GSR as their physiological response to stress reported 
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accuracies between 82.8% and 95% (Setz et al. 2010; Cho et al. 2017). 
The other studies reviewed combined GSR with other measurements 
such as skin temperature, leading to sometimes marginally improved 
accuracies (varying overall from 74.5% to 97%). Here, we have used 
near-body temperature as a covariate as this will be influenced by the 
varying degrees of physical activity in different modes. We also note 
that we ignored some temporal components of GSR and physiological 
stimuli. There are typically three phases of GSR activation – latency 
(the time between a stimulus and the start of the response), rising time 
(time between the stimulus and the peak of the response), and half- 
recovery time (time from the peak value of the response to the point 
of 50% recovery). The time between the stimulus and 50% recovery can 
be between 2 and 20s (Kyriakou et al. 2019), however recovery can 
take longer if another stimulus happens (Christopoulos et al. 2019). In 
our data, the entire cycle takes place within one step of our minute-by- 
minute analysis, so we may be missing some subtleties of arousal which 
would warrant more temporally-resolved analyses in the future. 

4.4. Conclusions 
Our study provides robust evidence that cycling can reduce stress 

compared to other activities in urban life. Walking also provides a sig-
nificant but more modest stress benefit. By relying on an objective proxy 
for stress (GSR) and a robust statistical framework (PSM), this study 
strengthens substantially the existing literature on mental health bene-
fits of active travel. While it seems inconsistent with the well-established 
literature on fear of traffic as a strong deterrent of cycling, it suggests 
that stress reduction benefits are felt once active travel behaviour is 
adopted – in other words encouraging people to experience active travel 
is likely to be the best way to promote it. Finding ways to reduce stress as 
part of daily lives is both a major challenge and an essential component 
of healthy living. Active travel offers a seamless solution to integrating 
stress reducing activities in daily routines. Our findings add to a growing 
and convincing body of literature making the case for cities to adopt 
urban land use and design strategies that will promote active travel, and 
for health practitioners to integrate active travel into their healthy 
lifestyles recommendations. 
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